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Soliton dynamics in a random Toda chain
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This paper addresses the soliton dynamics in a Toda lattice with a randomly distributed chain of masses.
Applying the inverse scattering transform, we derive effective equations for the decay of the soliton amplitude
that take into account radiative losses. It is shown that the soliton energy decays as;N23/2 for small-amplitude
solitons and;exp(2N) for large-amplitude solitons. The decay rate does not depend on the incoming energy
for large-amplitude soliton. An important feature is the generation of a soliton gas consisting of a large
collection of small solitons~a number of the order of«22 of solitons with momenta of the order of«2, where
« is the strength of fluctuations!. The soliton gas plays an important role in that the changes in the conservation
equations cannot be correctly understood if the soliton production is neglected. The role of the correlation
length of fluctuations on the soliton decay is discussed. It is shown that in the presence of long-range corre-
lation the Toda soliton is not backscattered, but progressively converted into forward-going radiation. The
analytical predictions are confirmed by full numerical simulations.

DOI: 10.1103/PhysRevE.67.026609 PACS number~s!: 42.81.Dp, 05.45.Yv
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I. INTRODUCTION

The propagation of nonlinear waves in disordered me
was recently the subject of many investigations. Most res
concern the dynamics of waves in continuous media. Dif
ent scales have been shown to play important roles. On
them is the localization length characterizing the decay
when the nonlinearity is small. The second one is a nonlin
length, which decays as the wave amplitude increase
plays a fundamental role when the nonlinearity is large. B
low some amplitude threshold, the localization length is l
than the nonlinear length, so that the exponential deca
wave is observed. Above the amplitude threshold, the de
law is dramatically reduced which proves that nonlinear
can compete with the exponential localization@1,2#.

When the nonlinear media are discrete much less
known about the wave dynamics as a new length scal
coming into the problem, the distance between two neighb
ing sites of the lattice. In a periodic chain of masses, in
actions between lattice oscillations can take the form o
resonant sequence, leading to the transfer of the energie
lattice excitations on large distances. Randomness lead
the detuning of the resonances and to the localization of
energy of an excitation on a finite number of sites. The sp
trum of normal modes is pure point@3#. This result is valid
for 1D ~one-dimensional! and 2D lattices and occurs in 3D
lattices for disorder with an intensity of fluctuations larg
than some critical value@4,5#. Note, however, that very spe
cial 1D configurations have been shown to inhibit the And
son localization~for example, see Ref.@6# for the random
dimer model!.

For disordered nonlinear discrete media very few anal
cal results are available. In most of nonlinear discrete s
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tems like discrete nonlinear Schro¨dinger ~DNLS! equation,
nonlinear Klein-Gordon lattice, Fermi-Pasta-Ulam cha
moving localized modes are absent due to the Peie
Nabarro barrier and standing localized modes exist.
cently, the structure of localized modes in disordered non
ear discrete media has been studied numerically in R
@7,8#. In the latter work, it is shown that localized mode
with time-periodic dependence can exist in a disordered
tice with one-site random potential. The frequencies of th
modes lie inside the linearized spectrum of the random n
linear discrete Klein-Gordon model and belongs to the
cantor set. Consequently, it appears that disorder can c
erate with nonlinearity to localize the energy. It is also not
that a continuous path exists from the Anderson localiz
modes to the nonlinear localized modes in disordered n
linear crystals. Enhancement of stability and appearanc
bifurcations in disordered nonlinear lattices were dem
strated in Ref.@9#.

Time-dependent random perturbations in the Ablowi
Ladik ~AL ! model were considered in Ref.@10#. The influ-
ence of the multiplicative temporal noise on the localiz
states~discrete breathers! in the DNLS equation is investi-
gated in Ref.@11#. It is shown that the white noise and non
linear damping will cause the decay of the breather. T
intensity decays approximately linearly with time.

Moving localized solutions exist in integrable nonline
discrete models. Two models admitting moving discrete s
tons are important. The first one is the AL model, which
not encountered in physical situations as far as we know.
wave dynamic in some electric transmission inductan
capacitance~LC! lines is modeled by the superposition
DNLS and AL equations with different weights. Taking int
account realistic experimental values for the parame
yields that the DNLS component dominates, so that the p
cesses in LC lines cannot be explained by a small defor
tion of the AL model@12#. The influence of the random o
©2003 The American Physical Society09-1
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site potential has been studied in Ref.@13#, where the decay
law of an AL soliton has been found. For the understand
of the dynamics of discrete solitons in disordered nonlin
lattices the Toda chain with random parameters is much m
interesting. The Toda chain is used as a model for the
namics of biopolymers such as DNA chains@14#, LC trans-
mission lines@15#, excitations in anharmonic lattices, lattice
of optical solitons in fibers@16#. In polymers like DNA,
strings in molecules consist of springs and masses. The
gitudinal displacements are induced by the van der Wa
potential, which can be approximated by the Toda poten

The random Toda lattice has been numerically studied
Refs. @17,18#. Two kinds of particles with different masse
were randomly distributed along an impure segment. For
soliton energy it is found that the dependence of the tra
mission rate on the segment lengthn can be fitted quite well
by 1/(11anb), with b'1.2 for a wave number equal to
in the dimensionless variables. It is also shown that the de
rate as a function of the wave number of the incident soli
can be represented by a Lorentzian function for small w
numbers and tends to a finite value in the large wave num
limit.

In nonlinear discrete media numerical simulations sh
the existence of power type decay of solitons. Such res
have been observed for the nontopological kink-type soli
in a disordered anharmonic lattice with nonlinear neare
neighbor interaction of quartic type, the random Ferm
Pasta-Ulam~FPU! chain @19#, and also in the same type o
lattices with a disordered harmonic or anharmonic poten
@20#. The decay law for the transmission coefficient of t
leading soliton;1/An has been observed.

The first theoretical approach of these phenomena c
sists in addressing a dilute system of impurities, where
distances between impurities are larger then the soliton w
and each interaction between soliton and impurity can
considered as isolated@1,19#. Another approach consists i
using the continuum approximation, and studying the s
chastically perturbed wave equations. In Ref.@21#, this ap-
proach has been applied to the random FPU and the d
law ;1/An for the soliton amplitude has been derived. B
this approach, considering only broad solitons, uses ind
the mean field theory and neglects radiation phenomena
are important for the long distance propagation in a rand
chain, so that it is generally questionable for the nonlin
waves in random media@22#.

An important peculiarity of the Toda model is the com
plete integrability allowing the detailed analysis of the d
crete soliton dynamics driven by a weak perturbation. In t
paper, we shall consider the Toda chain with a segment c
taining random masses. The length of the segment of
chain with random masses is assumed to be large;1/«2,
where « is the perturbation amplitude. Such a system c
also be realized in an electric transmission line with a lin
inductanceL and a nonlinear capacitanceC(Vn)5Q0 /(F0
2V01Vn), whereV is the applied voltage@23,24#. Here, the
inductanceL plays the role of mass and the segment of l
with random variations ofL will correspond to the segmen
with random masses. In comparison with the random
chain new phenomena are here possible. One of them is
02660
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generation of a soliton gas in the Toda chain driven by
random perturbation.

The paper is organized as follows. In Sec. II, we give
review of the homogeneous Toda chain and an introduc
to the inverse scattering transform~IST! that is necessary to
analyze the long distance evolution of the Toda lattice soli
driven by a random perturbation. In Sec. III, we derive t
evolution equations for the scattering data under random
turbations and the equations for the soliton parameters ta
into account the radiative losses. We analytically study
decay law of the discrete soliton and we exhibit differe
regimes depending on the soliton parameter and the cor
tion length of the medium. Comparisons of the analytic
predictions with results of numerical simulations of the ra
dom Toda chain are presented in Sec. IV.

II. THE HOMOGENEOUS TODA CHAIN

The model consists of a one-dimensional chain of p
ticles. Each particle with mass one interacts through
nearest-neighbor exponential potential. The difference eq
tion that governs the dynamics of a one-dimensional lat
with exponential interaction of nearest neighbors is dedu
from Newton’s law@15#

ẍn5exp~xn112xn!2exp~xn2xn21!, ~1!

wherexn is the longitudinal displacement of thenth particle
from its equilibrium position. The Hamiltonian of this sys
tem is

H05 (
n52`

`
1

2
ẋn

21@exp~xn2xn21!2~xn2xn21!21#.

~2!

In this section, we give a review and extend the main res
reported in Ref.@25#.

A. Direct scattering transform

Equation~1! can be rewritten as

ċn5cn~vn2vn21!, v̇n5cn112cn ,

wherecn5exp(xn2xn21) andvn5 ẋn . The eigenvalue prob-
lem for the continuous spectrum filling the interval22<l
<2 reads

Acn11f n11~k!1Acnf n21~k!1vnf n~k!5l f n~k!,

l5k1k21,

wherek is the spectral parameter that lies in the unit circ
S1
ª$kPC,uku51%. The Jost functionsc and f are the

eigenfunctions that satisfy the boundary conditions

cn~k! .
n→`

kn, fn~k! .
n→2`

k2n.

The Jost coefficients are connected to the Jost funct
through the identities
9-2
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SOLITON DYNAMICS IN A RANDOM TODA CHAIN PHYSICAL REVIEW E 67, 026609 ~2003!
fn~k!5a~k!cn* ~k!1b~k!cn~k!,

cn~k!5a~k!fn* ~k!2b* ~k!fn~k!.

The Wronskian of two functionsf andg is defined by

W~ f ,g!ªAcn~ f ngn212 f n21gn!.

Calculating the Wronskian off andc yields

W~f,c!5a~k!W~c* ,c!5a~k!~k212k!.

Another important point as we shall see in the following
that a admits an analytic continuation inside the unit dis
Finally, symmetry identities hold true

a* ~k!5a~1/k!, b* ~k!5b~1/k!, ua~k!u22ub~k!u251.

The points on the real axiskr , r 51, . . . ,R, ukr u,1, at
which a(kr)50 correspond one to one with eigenvalues
the discrete spectrum. At these points we have

fn~kr !5brcn~kr !, Im~br !50.

Setting r r5br /a8(kr), the set of scattering dat
$a(k),b(k),kPS1,kr ,r r ,r 51, . . . ,R% is sufficient to recon-
struct the Jost functions and the function (xn).

B. Inverse scattering transform

Given the set of scattering data, set

V~n!52(
r 51

R

r rkr
n1

1

2ip R
gu

b~k!

a~k!
kndk,

wheregu is the positively oriented unit circle. The invers
scattering transform consists in solving the Gel’fan
Levitan-Marchenko~GLM! equation for the kernelK,

K~n,m!1V~n1m!1(
l 5n

`

V~ l 1m11!K~n,l !50.

Then, the functioncn andvn are given by

cn5
12K~n21,n22!

12K~n,n21!
, vn5K~n,n!2K~n21,n21!.

C. Time evolution equation

The time evolutions equations of the scattering data
simple and uncoupled. For anyt>t0,

a~k,t !5a~k,t0!, uku51,

b~k,t !5b~k,t0!exp@v~k!~ t2t0!#, uku51,

r r~ t !5r r~ t0!exp@v~kr !~ t2t0!#, r 51, . . . ,R,

wherev(k)5k21/k.
02660
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D. Soliton

The scattering data of a pure soliton are (q0.0, e0
561)

a~k!5e0

k2k0

kk021
, b~k!50, k05e0exp~2q0!,

~3!

r05exp@2q0n0~ t !#sinh~q0!,

n0~ t !5n0~0!2e0sinh~q0!/q0t. ~4!

The corresponding solution is

xn~ t !52 lnF11
eq0sinh~q0!

cosh$q0@n2n0~ t !#%
e2q0[n2n0(t)] G . ~5!

The soliton momentum and energy are

M052e0sinh~q0!, H052@sinh~q0!cosh~q0!2q0#.

Note that the soliton solution is negative valued. Its veloc
is negative~positive! if the zerok0 is positive~negative!. The
Jost functions for the soliton are

cn~k!5knAn
21/212kk0An

12kk0
,

fn~k!52e0k2nAn
21/2k2k0An

12kk0
,

whereAn5(11k0
2n22n022)/(11k0

2n22n0).

E. Conserved quantities

Conserved quantities can be worked out as in any in
grable system. The quantities

I 052
1

2 (
n52`

`

log~cn!,

I 152 (
n52`

`

vn , I 25 (
n52`

`

12cn2
1

2
vn

2

are three of the infinite number of conserved quantities
the homogeneous Toda chain. The first integral of motion
proportional to the total displacement limn→1`xn
2 limn→2`xn52I 0/2. The second integral of motion is pro
portional to the momentum,(n52`

` ẋn52I 1. Finally, the
Hamiltonian ~2! can be expressed as a combination of
first and third integrals of motionH052I 212I 0. The deri-
vation of the set of conserved quantities is based on the
ries expansion of the analytic functiona(k) ask→0,

loga~k!.(
j 50

`

I jk
j , ~6!

where theI j are time independent. The conserved quantit
can be expressed in terms of the scattering data. Defin
9-3
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n(k)ª2 log(12ubu2(k)/uau2(k)) for kPS1, the integrals of
motion I j can be decomposed into the sums of continu
and discrete parts

I 05
1

4ip R
gu

n~q!

q
dq1(

r 51

R

logukr u, ~7!

I j5
1

2ip R
gu

n~q!

qj 11
dq1

1

j (
r 51

R

kr
j 2kr

2 j , j >1. ~8!

III. PROPAGATION WITH AN IMPURE SEGMENT

A. Perturbation model

We assume from now on that the masses of the parti
are not equal

mnẍn5@exp~xn112xn!2exp~xn2xn21!#, ~9!

wheremn is the mass of the particle at siten. A finite seg-
ment of impure masses is embedded into a homogen
infinite chain

mn5H 1 for n<0 andn>N«11

11«Vn for 1<n<N«,

where the small parameter«P(0,1) characterizes the ampl
tude of the perturbation. (Vn)nPN is a chain of identically
distributed random variables . They are zero mean^Vn&
50, they possess finite moments, the chain is stationar
^V0Vn&5^VmVm1n&. We may think for instance at the dis
crete white noise, where the random variablesVn are statis-
tically independent̂ VmVn&50 if mÞn with the variance
s25^Vn

2&. This configuration has been studied numerica
in Refs.@17,18#. We may also consider a colored noise w
a Gaussian autocorrelation function^V0Vn&5s2exp(2n2/lc

2)
with variances2 and correlation lengthl c .

The length of the impure segmentN« is assumed to be
large, of the order of«22, and we setN«5@ l 0 /«2#. We
introduce the slow variablel asn5@ l /«2#. Here, the brackets
stand for the integral part of a real number. We assume th
pure soliton is incoming from the left. The parameter of t
soliton isk052e2q0. Note that the total displacement, m
mentum and Hamiltonian are preserved

D5 lim
n→1`

xn2 lim
n→2`

xn , ~10!

M5 (
n52`

`

mnẋn , ~11!

H5 (
n52`

`
1

2mn
ẋn

21@exp~xn2xn21!2~xn2xn21!21#.

~12!
02660
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B. Evolution of the scattering data

Let us consider a general form

ċn5cn~vn2vn21!1«Rn , v̇n5cn112cn1«Sn .

We get the perturbation model~9! from this general form by
settingRn50 andSn5Vn(cn112cn). In such conditions the
Jost coefficients satisfy the coupled equations

da

dt
5«

1

k2k21
@ g̃~k!a1g~k!b#, ~13!

db

dt
5v~k!b2«

1

k2k21
@g* ~k!a1g̃~k!b#, ~14!

where

g~k!5(
n

cn~k!S Rn

2cn
1/2

cn21~k!

1
Rn11

2cn11
1/2

cn11~k!1Sncn~k!D , ~15!

g̃~k!5(
n

cn* ~k!S Rn

2cn
1/2

cn21~k!

1
Rn11

2cn11
1/2

cn11~k!1Sncn~k!D . ~16!

The presence of the factor (k2k21)21 in Eqs.~13 and 14! is
important. It means that a resonance exist close to the v
k51, and, thus, small solitons are likely to be generated
was observed for the random Korteweg-de Vries~KdV!
equation@26#.

The strategy we shall develop is based on the inve
scattering transform. The random perturbation induces va
tions of the spectral data. Calculating these changes, we
able to find the effective evolution of the field and calcula
the characteristic parameters of the wave. We are intere
in the effective dynamics of the soliton propagating throu
large impure segments with lengthN«5@ l 0 /«2#. The total
energy is conserved but the discrete and continuous com
nents evolve during the propagation. The evolution of
continuous component corresponding to radiation will
found from the evolution equations of the Jost coefficien
The evolutions of the soliton parameter will then be deriv
from the conservation of the total energy. However, this
proach turns out to be a little more tricky than expect
because of the generation of new solitons.

C. Convergence of the soliton parameter

We can now state the main result of the paper, wh
proof is given in the Appendix. For the statement, we need
define the concept of soliton gas in our framework: A solit
gas is a large collection of small solitons whose total ene
is evanescent, while the sum of their momenta is nonzer
9-4
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~1! With a probability that goes to 1 as«→0, the wave
scattered by a large impure segment with length@ l /«2# con-
sists of one main soliton with parameterq«( l ), a soliton gas,
and radiation.

~2! The process@q«( l )# l P[0,l 0] converges in probability to

the deterministic function@qs( l )# l P[0,l 0] , which satisfies the
ordinary differential equation

dqs

dl
5F~qs!, ~17!

where

F~q!52
1

4pE0

2p

C2~q,u!R̂@2K~q,u!#
sin2~u!

sinh2~q!
du,

~18!

C2(q,u) is the normalized energy density scattered by
soliton with parameterq per unit distance for a discrete whit
noise

C~q,u!5p

sinS u2
qsin~u!

sinh~q! D
sinhS psin~u!

sinh~q! D
, ~19!

R̂(k) is the discrete Fourier transform of the autocorrelat
function of (Vn)nPN,

R̂~k!5 (
n52`

`

^V~0!V~n!&cos~kn!, ~20!

K(q,u) is the wave number

K~q,u!5u2
q sin~u!

sinh~q!
. ~21!

The first point means that the event ‘‘the transmitted wa
consists of one soliton plus some other small amplitu
wave’’ occurs with very high probability for small«, while
the second point gives the effective evolution equation of
parameter of the transmitted soliton in the asymptotic fram
work «→0. Note thatR̂ is a positive real valued~Wiener-
Khintchine theorem!. In case of a discrete white noise,R̂(k)
is a constant equal to the variances2.

The scattered wave consists of one main soliton~with
parameterqs of order 1), a soliton gas~with quasizero en-
ergy but nonzero momentum!, and radiation~associated with
the continuous spectrum!. The induced displacement, mo
mentum, and energy of the radiation are

Dr52
1

2pE0

l E
0

2p

C2
„qs~y!,u…R̂@2K~q,u!#dudy,

~22!
02660
e
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Mr5
1

2pE0

l E
0

2p

C2
„qs~y!,u…R̂@2K~q,u!#cos~u!dudy,

~23!

Hr5
1

pE0

l E
0

2p

C2
„qs~y!,u…R̂@2K~q,u!#sin2~u!dudy,

~24!

respectively. We can also compute the induced displacem
Dg and momentumMg of the soliton gas since the tota
displacement and momentum are preserved by the pertu
tion, so

Dg52@q02qs~ l !#2Dr , ~25!

Mg522@sinh~q0!2sinh$qs~ l !%#2Mr . ~26!

The soliton gas actually consists of about«22 solitons with
parameters of orderqj

«;«2. That is why the induced dis
placement~equal to 2( jqj

«) and the momentum~equal to
2( j« jqj

«) are of order 1, while the energy@equal to
(4/3)( jqj

«3] is of order «4 and hence, asymptotically zero
Note that the emission of a soliton gas in an impure segm
has been observed in numerical experiments by Kubota@18#.
This gas was indeed described as small quasilocalized
tons that escape from the impure segment very slowly.

D. Small-amplitude soliton regime–white noise

If q!1, then the scattered energy density can be analy
more precisely. It is found that the functionC is concentrated
aroundu5p with a bandwidth of the order ofq

C~q,p1qs! .
q!1 2psq

sinh~ps!
.

This means that the radiation is going backward. Integrat
establishes thatF is simply F(q).24s2q3/15, q!1, and
Eq. ~17! can be solved

qs~ l !5
q0

A118s2q0
2l /15

. ~27!

In terms of energy, the decay rate reads as

Hs~ l !5
H0

~118s2q0
2l /15!3/2

. ~28!

Note that the decay rate asl 23/2 for the soliton energy is in
agreement with the numerical simulations carried out
Refs. @17,18#. However, as we shall see in the followin
section, this decay law is valid only for small-amplitude so
tons.

Equation ~27! gives the solution of the problem of th
soliton propagation in a nonlinear string with a random m
distribution, which has recently attracted the attention
some authors@27#. Indeed, the limit of small amplitudeq0
!1 corresponds to the broad Toda soliton occupying m
9-5
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lattice sites. Then, we can obtain for the relative displa
mentun5xn2xn21 in the continuum limit the equation

m~x!utt5uxx1
1

2
~u2!xx1

1

12
uxxxx, ~29!

wherem(x)511eV(x), V(x) is the random function, with
^V&50,̂ V(x)V(y)&5B(x2y; l c), B(x2y; l c)→2d(x2y),
l c→0. It is the stochastic Boussinesq equation. The unp
turbed equation is solvable by the inverse scattering tra
form. The single soliton solution is

us~x,t !5
A

cosh~AA~x2vt !!2
, ~30!

whereA is the soliton amplitude and the soliton velocity
v56A11A/3. This solution coincides with the Toda solu
tion for the relative displacement for small amplitude w
A5q0

2 ,v511q0
2/6. The solution of the linear spectral prob

lem for Eq. ~29! is very difficult and no analytical result i
known about the soliton evolution in the disordered nonl
ear string. But our solution~27! gives for the decay of soliton
amplitude in the disordered nonlinear string the result

A'
A0

118s2A0x/15
. ~31!

E. Large-amplitude soliton regime–white noise

The regime whenq0@1 can also be analyzed precisely,
long asqs( l )@1. It is found that the functionC becomes
independent ofu,

C~q,u! .
q@11

2
eq.

This means that a broad band radiation is emitted. Integ
ing establishes thatF(q).2s2/4, q@1, so that the decay
rate ofqs is linearqs( l )5q02s2l /4, which reads as an ex
ponential decay in terms of the energy

Hs~ l !5H0expS 2
s2l

2 D .

The energy decay rate is also independent of the energ
the incoming soliton. This remarkable feature was poin
out by the numerical simulations carried out in Ref.@18#.
When the valueqs becomes of the order of 1, the deca
switches to the power law described in the preceding sect

It should be noted that the decay rate of a large-amplit
soliton is higher than the one of a small-amplitude solito
This seems in contradiction with previous analysis of so
tons driven by random perturbations for other types of in
grable systems, such as the NLS equation@1#. However, we
cannot extrapolate the results corresponding to the cont
ous NLS equation to our system for the following two re
sons. First, the amplitude and velocity of the NLS soliton
not coupled and in the large mass limit the variations of m
is small, but the variation of velocity is important. In th
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Toda chain the soliton amplitude and velocity are coupled
the deceleration leads to the damping of amplitude. Seco
discreteness plays a primary role when the soliton amplit
is large and the additional scale order of the lattice s
comes into the play. The analysis of the randomly perturb
NLS equation has shown that nonlinearity may reduce
exponential localization. The proposed analysis of the r
domly perturbed Toda system shows that the interplay
tween discreteness, nonlinearity, and randomness is m
complicated and may lead to an enhanced instability o
large-amplitude soliton. In the large-amplitude regime t
soliton width is of the order of one site, and so is the cor
lation length of the discrete white noise. This involves
strong interaction between the fluctuations of the medi
and the soliton. This comment will be confirmed in the fo
lowing section.

F. Role of the correlation length

Let us assume that (Vn)nPN is a colored noise with the
autocorrelation function̂V0Vn&5s2exp(2n2/lc

2). For an ar-
bitrary l c the complete expressions~18–20! should be con-
sidered. The casel c!1 corresponds to the discrete whi
noise case. In this section, we shall assume thatl c@1 to
analyze the soliton dynamics and the influence of long-ra
correlation.

Let us first consider a small-amplitude solitonq!1. The
scattered energy density has two peaks atu50 andu5p,

R̂@2K~q,u!#C2~q,u!uu5qs .
q!1p5/2s2~11s2!2q6

36sinh2~ps!
s2l c

3expS 2
4l c

2q6s2~11s2!2

9 D ,

R̂@2K~q,u!#C2~q,u!uu5p1qs .
q!14p5/2s2q2

sinh2~ps!
s2l c

3exp~216p2l c
2!.

The peak aroundu5p (u50) corresponds to an emission o
backward-going ~forward-going! radiation. In the white
noise case, we have seen that the peak aroundu5p is domi-
nant. In the frameworkl c@1, the peak aroundu50 is domi-
nant. This means that, in the presence of long-range corr
tion, radiation is emitted in the forward direction, and
spectrum is centered around the carrier wave number of
soliton. Integrating the above expressions establishes th

F~q!.5 2
Aps2l cq

7

18335
if q3l c!1, l c@1, q!1

2
3s2

256l c
2q2

if q3l c@1, l c@1, q!1,

and Eq.~17! can be solved which establishes a power l
decay for the soliton energy. The decay rate is found to
maximal whenq3l c;1. This demonstrates that the stronge
9-6



th
e

rd

ce
b

ha
t

th
A

e

el

t
a

t
f

a
on

rm
s
ia-

se

as

on

eti-
f
seg-
at
in

the
-

s

r-
reti-

law
ry

on

SOLITON DYNAMICS IN A RANDOM TODA CHAIN PHYSICAL REVIEW E 67, 026609 ~2003!
interaction between the soliton and the fluctuations of
medium occurs when the width of the soliton is of the ord
of l c

1/3 sites.
Let us consider now a large-amplitude solitonq@1. The

scattered energy density has a peak atu50 with bandwidth
l c

21,

R̂@2K~q,u!#C2~q,u! .
q@1Ap

4
e2qs2l cexp~24u2l c

2!,

which means that radiation is only emitted in the forwa
direction. Integrating yields thatF(q)52s2/(64l c

2), which
shows that the total amount of emitted radiation is redu
with respect to the white noise case. This reduction can
interpreted as a result of the fact that the soliton width~of the
order of one site! is here very different froml c

1/3 ~we have
l c@1), resulting in a poor interaction. Once again, note t
the decay rate of the soliton energy does not depend on
incoming energy.

G. Application to the electric Toda chain

Let us estimate the value of the predicted effect for
possible experiment with the random electric Toda chain.
known, the Toda lattice can be modeled by a special typ
electric transmission line~see Fig. 1! with a linear induc-
tanceL and a nonlinear capacitanceC(Vn). The equation
governing this system is@24# LQ̈n5Vn111Vn2122Vn ,
where Qn denotes the charge stored in thenth capacitor.
Then, we assume that the differential capacitance is mod
by C(V)5Q0 /(F02V01V), whereV is the applied voltage
in the region (V0 ,V01Vn) and C(V0)5Q0 /F05C0. The
chargeQn(t) can be divided into two parts

Qn~ t !5E
0

V0
C~V!dV1E

V0

V01Vn(t)

C~V!dV

5Qc1Q0lnS 11
Vn~ t !

F0
D .

SinceQc is constant, we get the equation for the charge

LQ̈n5F0FexpS Qn112Qc

Q0
D1expS Qn212Qc

Q0
D

22 expS Qn2Qc

Q0
D G .

This equation can be rewritten in the form corresponding
the Toda chain equation, as we shall now see. Let us m
the electromechanical transformation (Qn2Qc)/Q052r n ,

FIG. 1. Electric Toda lattice with linear inductanceL and a
nonlinear capacitance such asC(Vn)5Q0 /(F02V01Vn).
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LQ0 /F05LC05m, where r n is the relative displacemen
between two points of massm. We then get the equation o
motion

mr̈n52 exp~2r n!2exp~2r n11!2exp~2r n21!.

Settingr n5xn212xn , we get the standard form of the Tod
chain. If L5L0 is a constant, then a voltage-pulse solit
parametrized by the wave numberqs can be generated

Vn~ t !5F0

sinh2~qs!

cosh2@qsn2sinh~qs!t/AL0C0#
.

Its amplitude isVs5F0sinh2(qs) or .F0qs
2 for a small-

amplitude soliton. In the electric chainL plays the role of
mass. Thus, variations of the linear inductance of the fo
L(n)5L0@11e(n)# with independent random variable
@e(n)#nPN corresponds in the mechanical chain to the var
tions of masses considered in this work. Denotings2

5^e(n)2&, the amplitude of a small-amplitude voltage-pul
soliton decays as

Vs~n!.Vs~0!S 11
8s2Vs~0!n

15F0
D 21

,

while for a large-amplitude soliton the amplitude decays

Vs~n!.Vs~0!expS 2
s2n

2 D .

In the experiment performed by Hirota@23# the parameters
were L522 mH, C(V)527V20.48 pF, and Vs(0)
;9 –10 V. So for the variations ofL equal to62mH, we
haves2'0.01 and the decay of the large-amplitude solit
by a factorAe at n5100.

IV. NUMERICAL SIMULATIONS

The results derived in the preceding section are theor
cally valid in the limit case«→0, where the amplitudes o
the perturbations go to zero and the size of the random
ment goes to infinity. In this section, we aim at showing th
the asymptotic behaviors of the soliton can be observed
numerical simulations in the case where« is small, more
precisely smaller than any other characteristic scale of
problem. We integrate Eq.~9! by using a fourth-order Runge
Kutta method.

We consider random massesmn511«Vn along the seg-
ment @1,N#, where Vn are independent random variable
with uniform distributions between21 and 1. We take the
value «50.1. The simulated evolutions of the soliton ene
gies are presented in Fig. 2 and compared with the theo
cal evolutions given by Eq.~17! in the scaleN5@ l /«2#. We
can observe, in particular, in Fig. 2~b,c! the algebraic decay
of the energy of the soliton, and in Fig. 2~d! the exponential
decay of the energy and the cross over to the power
decay. All these results confirm that the effective ordina
differential Eq.~17! describes with accuracy the transmissi
of a soliton in a randomly perturbed Toda lattice.
9-7
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FIG. 2. Energy of the transmitted soliton as a function of the length of the impure segment. Different initial values for the
parameters are addressed. The solid lines stand for the theoretical values@Eq. ~17!#, and the dotted lines plot the results of full numeric
simulations. The scales are lin-lin in picture~a!, log-log in pictures~b! and~c! ~so that theN23/2 decay is noticeable!, and lin-log in picture
~d! ~so that the initial exponential decay is noticeable!.
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V. CONCLUSION

We have studied the propagation of solitons through
segment ofN impure masses. We have shown that the de
rate of the soliton energy is an exponential decaying func
of N for large energies, with a decay rate that does not
pend on the soliton. The scattering of a large-amplitude s
ton is characterized by the emission of a broad band ra
tion in forward and backward directions. When the ene
becomes small, the decay switches to the power lawN23/2.
The scattering of a small-amplitude soliton is characteri
by the emission of a narrow band backward-going radiati
The role of the correlation length of the noise and the infl
ence of long-range correlation have also been discusse
presence of long-range correlation the soliton dynamic
completely different. The soliton emits a narrow band rad
tion with a spectrum centered around the soliton wave nu
ber, which means that the soliton is not backscattered,
progressively converted into forward-going radiation.

We have put into evidence that the scattering of the s
ton generates not only continuous radiation, but also a s
ton gas, that is to say a collection ofJ«, of order«22, soli-
tons with small parametersqj

« , of order«2 ~remember« is
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the dimensionless parameter that governs the amplitud
the perturbation and the length of the segment;«22). In the
asymptotic framework where« goes to zero, the soliton ga
has nonzero momentum, but quasizero energy. The gen
tion of a large number of small quasilocalized solitons in
impure segment had been observed in numerical simulat
by Kubota @18#. These waves were indeed found to esca
very slowly from the impure segment. The production of t
soliton gas is interesting by itself as a new phenomenon
is not encountered when a random NLS or AL equation
considered, but it should also be pointed out that this prod
tion is very important in that we cannot understand correc
the changes in the conservation equations without accoun
for soliton production.

APPENDIX A: PROOF OF THE MAIN RESULT

In this section, we outline the main steps of the proof
the result stated in Section III C. The proof follows close
the strategy developed in Ref.@26# in the KdV framework
and we shall underline the key points.

In a first time, we carry out the analysis under the s
9-8
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called adiabatic hypothesis. The adiabatic approxima
consists in assuminga priori that, while the soliton exists, its
evolution and the other components of the wave do not
teract. More precisely, we assume that the time evolution
the Jost coefficientsa and b given by Eqs.~13 and 14! de-
pend only on the components of the functionsg and g̃ that
are associated with the soliton. We then carry out calcu
tions under this approximation. It reduces the analysis to
infinite-dimensional set of ordinary differential equatio
with random coefficients, and eventually it provides an e
pression of the solution (c,v). A posteriori, we check for
consistency that this approximation is actually justified in
asymptotic framework«→0. More exactly, we show that th
components of the functionsg and g̃ which correspond to
the interplay between the computed radiation~including the
soliton gas! and the soliton, or else which originate from th
sole effect of the radiation, can be considered as neglig
terms for the soliton evolution.

1. Prove the stability of the zero of the Jost coefficienta

The zero corresponds to the soliton. This part stron
relies on the analytical properties ofa in the unit diskD1 of
the complex plane. ForkPD1 outside the two small balls
with centers at61 and radiusM«2, we can derive estimate
of a(k) by Eqs.~13 and 14!. We then apply Rouche´’s theo-
rem so as to prove that the number of zeros is constant in
the unit disk minus the two small balls. This method is e
cient to prove that the main zero~corresponding to the inci
dent soliton! is preserved, but it does not bring control on
precise location in the unit disk. This step is not sufficient
compute the variations of the soliton parameter. Furtherm
it is also possible~and it actually holds true! that new soli-
tons with parametersqj

« inside the small balls are generate
Note, however, that the numberJ«(t/«2) of such new soli-
tons can be bounded above by«22. Indeed, we shall see in
the next paragraph that the amountDr of displacement in-
duced by radiation is of order 1 for propagation distance
order «22. The conservation of the total displacement th

implies that the displacementDg52( j 51
J«

qj
« induced by the

soliton gas is bounded above by 0 and below by2Dr
12q0.

2. Computation of the amount of radiation,
and then the variations of the soliton parameters

Under the adiabatic approximation, we solve the evo
tion Eqs.~13! and~14! so that we get a closed-form expre
sion of the ratiob/a. More exactly, the scattering dat
b̃(k,t)5b/a(k,t)e2v(k)t at time t0 /«2 is given by

b̃S k,
t0

«2D 52
«

k2k21E2`

t0 /«2

dtg* ~k,t !e2v(k)t,

where g(k,t)5(nVncn(k,t)2@cn11(t)2cn(t)#. Setting k
5eiu, the increment of

b̃~eiu,t !5b~eiu,t !/a~eiu,t !exp@22isin~u!t#
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is, up to a phase term

D«~u!ªb̃S eiu,
t1DT

«2 D 2b̃S eiu,
t1DT

«2 D
5 i«C~u! (

n5Ns(T/«2)

Ns[(T1DT)/«2]

Vnexp@2inK~u!#,

whereNs(T/«2) is the soliton center at timeT/«2, qs is the
soliton wave number,K is defined by Eq.~21!, and

C~u!5
1

2 sin~u!
E

2`

`

@cs,1~ t !2cs,0~ t !#

3cs,0* ~eiu,t !2e22i sin(u)tdt,

cs,n~ t !511
sinh2~q!

cosh2@qn2q2sinh~q!t#
,

cs,0~eiu,t !5A~ t !21/2
11eiu2qA~ t !

11eiu2q
,

A~ t !5
11e2q12 sinh(q)t

11e2 sinh(q)t
.

Computations based on the residue theorem show thatC is
indeed given by Eq.~19!. On the other hand, we can com
pute the mean and the correlation function ofuD«u2 at two
nearby frequencies

^uD«u2~u!&5C2~u!R̂@2K~u!#«2DNs
« ,

u^uD«u2~u!uD«u2~u8!&u5^uD«u2~u!&2F1

1sinc2S @K~u!2K~u8!#DNs
«

2 D
1sinc2S @K~u!1K~u8!#DNs

«

2 D G ,
where sinc(s)5sin(s)/s and DNs

«5Ns@(T1DT)/«2#
2Ns(T/«2) is of order«22. This shows that the frequenc
correlation radius of the scattered energy density is of or
«2. This implies that the integrated energy density is a s
averaging quantity, so that the total radiated energy is de
ministic at first order in«. The time perturbations preserv
the total energy, so we can deduce from the radiated en
the decay of the energy due to the soliton part
9-9
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H052$sinh@q«~ l !#cosh@q«~ l !#2q«~ l !%

1(
j 51

J«

2@sinh~qj
«!cosh~qj

«!2qj
«#

1
1

pE0

2p

n«~eiu!sin2~u!du,

wheren«(eiu)52 log@12ub̃(eiu)u2#. Since the new generatio
of solitons consists ofJ«5O(«22) solitons whose energie
are of order«6, only the discrete energy of the main solito
and the continuous energy of the radiation are of order 1
the balance of the total energy. This establishes the form
~17!.

3. Computation of the form of the scattered wave and check
the adiabatic hypothesis

Given the scattering data, we can reconstruct the wave
IST. The procedure is given for instance in Ref.@28# for a
general type of perturbed KdV equation. We get the first t
terms of the expansion of the kernelK5Ks1Kr , whereKs
corresponds to the soliton andKr corresponds to the emitte
radiation. By solving the GLM equation, we can deduce
form of the radiation in the vicinity of the soliton as well a
the corresponding Jost functionscs andc r . Substitutingc
ez

s
ti

as

Ga

E
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5cs1cr and c5cs1cr into Eqs.~13 and 14! allows us to
derive the second-order correction to the Jost coefficiena
@of order «2/(k2k21)]. This step puts into evidence tha
new solitons with parametersqj

« of order«2 are generated.
The final part of the proof consists in checkinga poste-

riori the adiabatic hypothesis, that is, to say proving that
radiated wave packet which has been determined here a
has actually no noticeable influence on the evolutions~13
and 14! of the Jost coefficientsa andb. We must estimate the

components of the functionsg and g̃ which have been ne
glected until now and which are related to the interplay
the main soliton, the soliton gas, and the radiation. These
technical calculations which are based upon the mixing pr
erties of the processVn . These estimates are qualitative
similar to the ones that are presented in Ref.@29# for the
randomly perturbed nonlinear Schro¨dinger equation. We
shall not give the detailed derivations of these estimates
cause they consist of lengthy calculations that are specifi
the perturbation, that is, under consideration. Since this w
was performed in Ref.@29# for a randomly perturbed NLS
equation, and the technical estimates are essentially sim
although the details are different, we thought it better to re
the interested reader to this paper for an example of the t
nical estimates that are necessary for the check of the a
batic hypothesis.
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