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Soliton dynamics in a random Toda chain
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This paper addresses the soliton dynamics in a Toda lattice with a randomly distributed chain of masses.
Applying the inverse scattering transform, we derive effective equations for the decay of the soliton amplitude
that take into account radiative losses. It is shown that the soliton energy decay¢ &€ for small-amplitude
solitons and~exp(—N) for large-amplitude solitons. The decay rate does not depend on the incoming energy
for large-amplitude soliton. An important feature is the generation of a soliton gas consisting of a large
collection of small solitonga number of the order of 2 of solitons with momenta of the order ef, where
¢ is the strength of fluctuatiopsThe soliton gas plays an important role in that the changes in the conservation
equations cannot be correctly understood if the soliton production is neglected. The role of the correlation
length of fluctuations on the soliton decay is discussed. It is shown that in the presence of long-range corre-
lation the Toda soliton is not backscattered, but progressively converted into forward-going radiation. The
analytical predictions are confirmed by full numerical simulations.
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I. INTRODUCTION tems like discrete nonlinear Schiinger (DNLS) equation,
nonlinear Klein-Gordon lattice, Fermi-Pasta-Ulam chain,
The propagation of nonlinear waves in disordered medianoving localized modes are absent due to the Peierls-
was recently the subject of many investigations. Most result®labarro barrier and standing localized modes exist. Re-
concern the dynamics of waves in continuous media. Differcently, the structure of localized modes in disordered nonlin-
ent scales have been shown to play important roles. One @far discrete media has been studied numerically in Refs.
them is the localization length characterizing the decay law7,8]. In the latter work, it is shown that localized modes
when the nonlinearity is small. The second one is a nonlineawith time-periodic dependence can exist in a disordered lat-
length, which decays as the wave amplitude increases. tice with one-site random potential. The frequencies of these
plays a fundamental role when the nonlinearity is large. Bemodes lie inside the linearized spectrum of the random non-
low some amplitude threshold, the localization length is lesdinear discrete Klein-Gordon model and belongs to the fat
than the nonlinear length, so that the exponential decay afantor set. Consequently, it appears that disorder can coop-
wave is observed. Above the amplitude threshold, the decagrate with nonlinearity to localize the energy. It is also noted
law is dramatically reduced which proves that nonlinearitythat a continuous path exists from the Anderson localized
can compete with the exponential localizatidn2]. modes to the nonlinear localized modes in disordered non-
When the nonlinear media are discrete much less ifinear crystals. Enhancement of stability and appearance of
known about the wave dynamics as a new length scale isifurcations in disordered nonlinear lattices were demon-
coming into the problem, the distance between two neighborstrated in Ref[9].
ing sites of the lattice. In a periodic chain of masses, inter- Time-dependent random perturbations in the Ablowitz-
actions between lattice oscillations can take the form of d.adik (AL) model were considered in Rdfl0]. The influ-
resonant sequence, leading to the transfer of the energies efice of the multiplicative temporal noise on the localized
lattice excitations on large distances. Randomness leads &tates(discrete breatherdn the DNLS equation is investi-
the detuning of the resonances and to the localization of thgated in Ref[11]. It is shown that the white noise and non-
energy of an excitation on a finite number of sites. The speclinear damping will cause the decay of the breather. The
trum of normal modes is pure poifi8]. This result is valid intensity decays approximately linearly with time.
for 1D (one-dimensionaland 2D lattices and occurs in 3D Moving localized solutions exist in integrable nonlinear
lattices for disorder with an intensity of fluctuations larger discrete models. Two models admitting moving discrete soli-
than some critical valug4,5]. Note, however, that very spe- tons are important. The first one is the AL model, which is
cial 1D configurations have been shown to inhibit the Andernot encountered in physical situations as far as we know. The
son localization(for example, see Ref6] for the random wave dynamic in some electric transmission inductance-
dimer model. capacitancgLC) lines is modeled by the superposition of
For disordered nonlinear discrete media very few analytiDNLS and AL equations with different weights. Taking into
cal results are available. In most of nonlinear discrete sysaccount realistic experimental values for the parameters
yields that the DNLS component dominates, so that the pro-
cesses in LC lines cannot be explained by a small deforma-
*FAX: (33) 5 61 55 60 89; Email address: garnier@cict.fr tion of the AL model[12]. The influence of the random on
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site potential has been studied in Ref3], where the decay generation of a soliton gas in the Toda chain driven by a

law of an AL soliton has been found. For the understandingandom perturbation.

of the dynamics of discrete solitons in disordered nonlinear The paper is organized as follows. In Sec. Il, we give a

lattices the Toda chain with random parameters is much moréeview of the homogeneous Toda chain and an introduction

interesting. The Toda chain is used as a model for the dyto the inverse scattering transfor$T) that is necessary to

namics of biopolymers such as DNA chairisf], LC trans- ~ analyze the long distance evolution of the Toda lattice soliton

mission lineq 15], excitations in anharmonic lattices, lattices driven by a random perturbation. In Sec. Ill, we derive the

of optical solitons in fiberd16]. In polymers like DNA, evolution equations for the scattering data under random per-

strings in molecules consist of springs and masses. The lofurbations and the equations for the soliton parameters taking

gitudinal displacements are induced by the van der Waalito account the radiative losses. We analytically study the

potential, which can be approximated by the Toda potentialdecay law of the discrete soliton and we exhibit different
The random Toda lattice has been numerically studied iriegimes depending on the soliton parameter and the correla-

Refs.[17,18. Two kinds of particles with different masses tion length of the medium. Comparisons of the analytical

were randomly distributed along an impure segment. For th@redictions with results of numerical simulations of the ran-

soliton energy it is found that the dependence of the transdom Toda chain are presented in Sec. IV.

mission rate on the segment lengtlean be fitted quite well

by 1/(1+ an®), with B~1.2 for a wave number equal to 1 Il. THE HOMOGENEOUS TODA CHAIN

in the dimensionless variables. It is also shown that the decay _ . . _

rate as a function of the wave number of the incident soliton '€ Model consists of a one-dimensional chain of par-

can be represented by a Lorentzian function for small wavdiCles. Eac_h particle with _mass oneinteracts through a
numbers and tends to a finite value in the large wave numbeqearest-nelghbor exponentla_l potential. Thg d|ﬁerence equa-
limit tion that governs the dynamics of a one-dimensional lattice

In nonlinear discrete media numerical simulations shovx}N'th exponential interaction of nearest neighbors is deduced

the existence of power type decay of solitons. Such resultgrom Newton's law[15]

have been observed for the nontopological kink-type soliton = XP(Xo s 1— X)) — EXE{ X — X1_1) e
in a disordered anharmonic lattice with nonlinear nearest- n= €XP(Xn+1 = Xp (X =Xn—1),

neighbor interaction of quartic type, the random Fermi-ynerex. is the longitudinal displacement of timeh particle
Pasta-Ulam(FPU) chain[19], and also in the same type of fom jts equilibrium position. The Hamiltonian of this sys-
lattices with a disordered harmonic or anharmonic potentialg, is

[20]. The decay law for the transmission coefficient of the

leading soliton~1/y/n has been observed. 1.
The first theoretical approach of these phenomena con- Ho= 2, =Xa+[€Xp(Xn—Xn—1)—(Xn—Xq-1)—1].

sists in addressing a dilute system of impurities, where the e 5

distances between impurities are larger then the soliton width 2

and each interaction between soliton and impurity can bgn this section, we give a review and extend the main results

considered as isolated,19]. Another approach consists in yeported in Ref[25].

using the continuum approximation, and studying the sto-

chastically perturbed wave equations. In R&fl], this ap-

proach has been applied to the random FPU and the decay _ )

law ~1/y/n for the soliton amplitude has been derived. But Equation(1) can be rewritten as

this approach, considering only broad solitons, uses indeed . .

the mean field theory and neglects radiation phenomena that Ch=Cn(Un=Vn-1);  Un=Cn+1~Cn,

are important for the long distance propagation in a random . _

chain, so that it is generally questionable for the nonlinealVherecn=expt,—x, 1) andv,=x,. The eigenvalue prob-

waves in random medig22]. lem for the continuous spectrum filling the interval<x
An important peculiarity of the Toda model is the com- <2 reads

plete integrability allowing the detailed analysis of the dis- — B

crete soliton dynamics driven by a weak perturbation. In this C+afnra(k)+ \/C_nfn—l(kH”nfn(k)_)‘fn(k)*

paper, we shall consider the Toda chain with a segment con- N

taining random masses. The length of the segment of the - '

chain with random masses is assumed to be largé=",  herek is the spectral parameter that lies in the unit circle
where e is the perturbation amplitude. Such a system can51::{k6C lk|=1}. The Jost functions and ¢ are the
also be realized in an electric transmission line with a ”neareigenfunc:cions thét satisfy the boundary conditions

inductanceL and a nonlinear capacitan€V,)=Qq/(Fg
—V,+V,), whereV is the applied voltagg23,24|. Here, the N n——o

inductancel. plays the role of mass and the segment of line (k) = K", dn(k) = k™"

with random variations of will correspond to the segment

with random masses. In comparison with the random ALThe Jost coefficients are connected to the Jost functions
chain new phenomena are here possible. One of them is thierough the identities

A. Direct scattering transform
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$n(k)=a(k) gy (k) +b(K) ¢n(K), D. Soliton
The scattering data of a pure soliton arg,®0, ¢
(k) =a(k) ¢y (k) —b* (k) (k). =*1)
The Wronskian of two functionsandg is defined by a(k)= EOkk;_ol, b(K)=0, ko= eoeXp(— o),
W(f,)s=en(frgn-1—fn-10n)- 3
Calculating the Wronskian ap and ¢ yields po=eXd 2dono(t) Jsinh(qp),
W(, ) =a(k)W(y*,¢)=a(k)(k~*—k). No(t)=nNo(0) — €osinh(go)/qot. 4

Another important point as we shall see in the following is T"€ corresponding solution is
that a admits an analytic continuation inside the unit disk. doei
. . " efosinh(qg)
Finally, symmetry identities hold true Xo(t)=—1In| 1+ e
cosHdo[ n—no(t) 1}

The soliton momentum and energy are

—Goln—no()] | (5)

a*(k)=a(1k), b*(k)=b(1k), |a(k)|?>—|b(k)|?=1.

The points on the real axis,, r=1,... R, |k/|<1, at Mo=2e,sinh( o)

. L Ho=2[sin co —do]-
which a(k,) =0 correspond one to one with eigenvalues of 0=2[sinf(Go)cOSHdo) ~ o]

the discrete spectrum. At these points we have Note that the soliton solution is negative valued. Its velocity
is negativepositive if the zerokg is positive(negative. The
$n(kr)=brihn(ky),  Im(b,)=0. Jost functions for the soliton are
Setting p,=b,/a’'(k,), the set of scattering data o121~ KkoA,
{a(k),b(k),ke Stk ,p,,r=1, ... R} is sufficient to recon- In(K)=K"Aq T kky
struct the Jost functions and the functiog,).
_ _ k_ koA
B. Inverse scattering transform dn(K)=—e€ck™"A, 1/2—1_ kkon’

Given the set of scattering data, set o o2 o 2n
whereA,=(1+k; % )/(1+k, 7).
b(k)

R
1
—— n, 7 n
Q(n) 2:1 pikit 5 3& kndk,

Lack) E. Conserved quantities

. . . o . Conserved quantities can be worked out as in any inte-
where v, is the positively oriented unit circle. The inverse grable system. The quantities

scattering transform consists in solving the Gelfand-

Levitan-Marchenkd GLM) equation for the kerneK, 1 =
0 n=-—w
K(n,m)+Q(n+m)+ > Q(+m+1)K(n,1)=0. B B
I=n 1
ly=— E Un, lo= 2 l—Cn—Evﬁ
n=—ox n=—owx

Then, the functiorc,, andv,, are given by

1-K(n-1n-2) are three of the infinite number of conserved quantities for

Ch= , v,=K(n,n)—K(n—1n-1). the homogeneous Toda chain. The first integral of motion is
1-K(n,n-1) proportional to the total displacement |im, .x,
—lim,_ _.X,= —1¢/2. The second integral of motion is pro-
C. Time evolution equation portional to the momentumZ:f:,oc)'(nz—Il. Finally, the
The time evolutions equations of the scattering data ar&familtonian(2) can be expressed as a combination of the
simple and uncoupled. For argt,, first and third integrals of motiofi{y= —1,+2l4. The deri-
vation of the set of conserved quantities is based on the se-
ak,t)y=a(k,tg), |k|=1, ries expansion of the analytic functi@{k) ask—0,
b(k,t)=b(k,tg)exd w(k)(t—tg)], |k|=1, oga(k) =S |jki, ®)
i=o
pr(t)=pr(t0)exqw(kr)(t_t0)]! r=1,... R,
where thel; are time independent. The conserved quantities
wherew(k) =k—1/k. can be expressed in terms of the scattering data. Defining
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n(k) == —log(1—|bj*(k)/|al’(k)) for keS!, the integrals of B. Evolution of the scattering data
motion I; can be decomposed into the sums of continuous | et us consider a general form
and discrete parts

én:Cn(Un_Unfl)"'sRn! i)n:Cn+1_Cn+8Sn-
R
|O:_i 35 @dq+ > loglk,|, (7)  We get the perturbation mod€9) from this general form by
4im Jy, q r=1 settingR,=0 andS,=V,(c,;1—Cy). In such conditions the
Jost coefficients satisfy the coupled equations
1 N, 1
== —dg+ - > ki-kT,  j=1. (8 da_ 1 -
1 2im Iy, gitt = T E—Sm[v(k)éﬁ‘ y(k)b], (13
Ill. PROPAGATION WITH AN IMPURE SEGMENT db . ~
, gr - e(Wb—e———[y"(Ka+y(kb], (14
A. Perturbation model k—k
We assume from now on that the masses of the particlegnere
are not equal
. Rn
MoX=[eXA(Xn 41— %) ~€XPX0—Xn-D],  (9) ¥(0)= 2 ()| Z5¥-1(K)
n
wherem,, is the mass of the particle at site A finite seg- R
ment of impure masses is embedded into a homogeneous +”T7;¢//n+l(k)+sn¢/;n(k)), (15
infinite chain Cht1
1 forn<0 andn=N¢+1 ~ R
M= y(k)=2 ¢:<k>(—;‘,2wn1<k>
" |1+eV, forlsnsN°, n 2c,
R
where the small parametere (0,1) characterizes the ampli- + %¢n+1(k)+&wn(k)) _ (16)
tude of the perturbation.\{,),.n iS @ chain of identically 2Ch71

distributed random variables . They are zero m&¥hp) 1 .

—0, they possess finite moments, the chain is stationary sh® Presence of the factok{ k™) "~ in Egs.(13 and 14is
(VoVi) = (VyVimsn). We may think for instance at the dis- important. It means that a resonance exist close to the value
crete white noise, where the random variablesare statis- <=1, and, thus, small solitons are likely to be generated, as
tically independentV,,V,)=0 if m#n with the variance Was observed for the random Korteweg-de Vrig&dV)
a?=(V2). This configuration has been studied numericallyequat'on[%]'

P i 713 oy aCondr  ir i 17,0801 10 11 Sl s bsas 1 e
a Gaussian autocorrelation functiovoV,,) = o2exp(—n/12) 9 ' b

with varianceo? and correlation length, tions of Fhe spectral O!ata. Calc_ulating the;e changes, we are
The length of the impure segmeNe .is assumed to be able to find the .effectlve evolution of the field and c_alculate
large, of the order o2, and we setN°=[lo/e2]. We f[he charactgrlsnc parameters of thg wave. We are interested
) ’ - 5 0 ) in the effective dynamics of the soliton propagating through
introduce the slow variablleasn=[1/¢“]. Here, the brackets large impure segments with lenghtf =[1,/=2]. The total
&qergy is conserved but the discrete and continuous compo-
nents evolve during the propagation. The evolution of the
continuous component corresponding to radiation will be
found from the evolution equations of the Jost coefficients.
The evolutions of the soliton parameter will then be derived
D= lim x,— lim X, (10 from the conservation of the total energy. However, this ap-
n—te n—-e proach turns out to be a little more tricky than expected
because of the generation of new solitons.

pure soliton is incoming from the left. The parameter of the
soliton isky= —e~%. Note that the total displacement, mo-
mentum and Hamiltonian are preserved

M= 2 mX,, (11 C. Convergence of the soliton parameter

n=—owx
We can now state the main result of the paper, whose
w 1 proof is given in the Appendix. For the statement, we need to
_ ' define the concept of soliton gas in our framework: A soliton
H= X2+ [eXP(Xn—Xn_1) = (Xn—Xn_1) — 1]. ) : ,
n—Z 2m, " [&XPXn=Xn-1) = (Xn=Xn-1) = 1] gas is a large collection of small solitons whose total energy
(12 is evanescent, while the sum of their momenta is nonzero.
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(1) With a probability that goes to 1 as—0, the wave
scattered by a large impure segment with lerigtla?] con-
sists of one main soliton with parametgi(l), a soliton gas,
and radiation.

(2) The proces$q®(1) ] (o, cOnverges in probability to

the deterministic functiorﬁqs(l)],e[oy,o] , Which satisfies the
ordinary differential equation

das

o =F(a), an

where

’(6)
sink?(q)

Si

de,
(18)

1,
F@)=- 5= @, 0RI2K(,0)]

PHYSICAL REVIEW E 67, 026609 (2003

1 | (27 ) .
Mf:%jo fo C*(as(y), O)R[2K(q, 6)]cog 6)dody,
23

H g flfz C2 (1 (7] RA 2K q 6 S.|| 6 d0d
r oJo ( S(y)v ) [ ( ’ )] I ( ) y1

respectively. We can also compute the induced displacement
Dy and momentumM of the soliton gas since the total
displacement and momentum are preserved by the perturba-
tion, so

Dg=2[do—qs(D ]~ D, (29
M= —2[sinh(do) —sinh{qs(1)}]— M, .

The soliton gas actually consists of abeut? solitons with

(26)

C2(q,6) is the normalized energy density scattered by thedarameters of ordeq’~s?. That is why the induced dis-

soliton with parameteq per unit distance for a discrete white
noise

: gsin( 6))
sm( 60— m
arsin( 0)) '

C(q,0)=m
S"‘”( sin(q)

(19

R(«) is the discrete Fourier transform of the autocorrelation

function of V) nens

R()= 2 (V(0)V(m)cos k),

(20)
K(q, ) is the wave number
_ . gsin(9)
K(q,0)=6— Sin(Q) (21

The first point means that the event “the transmitted wave
consists of one soliton plus some other small amplitude

wave” occurs with very high probability for smadl, while

the second point gives the effective evolution equation of the
parameter of the transmitted soliton in the asymptotic frame-

work £—0. Note thatR is a positive real valuedWiener-

Khintchine theorem In case of a discrete white noige(«)
is a constant equal to the variana@.

The scattered wave consists of one main solitaith
parametergs of order 1), a soliton gaéwith quasizero en-
ergy but nonzero momentyrand radiatior{associated with
the continuous spectrymThe induced displacement, mo-
mentum, and energy of the radiation are

1 | (27 ~
Dr=- Efo fo C%(as(y). O)R[2K(a,6)]dody,
(22

placement(equal to 2;qf) and the momentuntequal to
23e;q;) are of order 1, while the energjequal to
(4/3)2jqj‘93] is of ordere* and hence, asymptotically zero.
Note that the emission of a soliton gas in an impure segment
has been observed in numerical experiments by Kuti@&h

This gas was indeed described as small quasilocalized soli-
tons that escape from the impure segment very slowly.

D. Small-amplitude soliton regime-white noise

If q<1, then the scattered energy density can be analyzed
more precisely. It is found that the functi@his concentrated
around#=  with a bandwidth of the order af

c <l 2xsq
(q,7+qs) = sinh(7s)

This means that the radiation is going backward. Integrating
establishes thaf is simply F(q)=—402q%/15, q<1, and
Eq. (17) can be solved

do
= — — ———. 2
%() J1+802921/15 @
In terms of energy, the decay rate reads as
Ho
Hy(l)= (28)

(1+802q21/15)%?

Note that the decay rate &s°2 for the soliton energy is in
agreement with the numerical simulations carried out in
Refs.[17,18. However, as we shall see in the following
section, this decay law is valid only for small-amplitude soli-
tons.

Equation (27) gives the solution of the problem of the
soliton propagation in a nonlinear string with a random mass
distribution, which has recently attracted the attention of
some author$27]. Indeed, the limit of small amplitudgg
<1 corresponds to the broad Toda soliton occupying many
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lattice sites. Then, we can obtain for the relative displaceToda chain the soliton amplitude and velocity are coupled so
mentu,=X,—X,_1 in the continuum limit the equation the deceleration leads to the damping of amplitude. Second,
discreteness plays a primary role when the soliton amplitude
is large and the additional scale order of the lattice step
comes into the play. The analysis of the randomly perturbed
NLS equation has shown that nonlinearity may reduce the
wherem(x) =1+ €V(x), V(X) is the random function, with  exponential localization. The proposed analysis of the ran-
(V)=0V(X)V(y))=B(x—y;lc), B(x—y;lc)—28(x—y),  domly perturbed Toda system shows that the interplay be-
lc—0. Itis the stochastic Boussinesq equation. The unperween discreteness, nonlinearity, and randomness is more
turbed equation is solvable by the inverse scattering transsomplicated and may lead to an enhanced instability of a
form. The single soliton solution is large-amplitude soliton. In the large-amplitude regime the
soliton width is of the order of one site, and so is the corre-
A lation length of the discrete white noise. This involves a
cosiVA(x—0t))?’ strong interaction between the fluctuations of the medium
and the soliton. This comment will be confirmed in the fol-
whereA is the soliton amplitude and the soliton velocity is lowing section.
v==+1+A/3. This solution coincides with the Toda solu-
tion for the relative displacement for small amplitude with F. Role of the correlation length
A=q§,v= 1+q§/6. The solution of the linear spectral prob-
lem for Eq.(29) is very difficult and no analytical result is
known about the soliton evolution in the disordered nonlin-
ear string. But our solutiofR7) gives for the decay of soliton
amplitude in the disordered nonlinear string the result

1 ) 1
M(X) Uy = Uyx+ E(u )xx+1_2uxxxxa (29

ug(x,t)= (30

Let us assume thatV(;),.n is @ colored noise with the
autocorrelation functioVoV,)= o?exp(—n?12). For an ar-
bitrary |, the complete expressiori$8—20 should be con-
sidered. The casé.<1 corresponds to the discrete white
noise case. In this section, we shall assume thatl to

Ao analyze the soliton dynamics and the influence of long-range
~——, (31)  correlation.
1+80°Apx/15 Let us first consider a small-amplitude solitqre1. The

scattered energy density has two peakgal and 6=,
E. Large-amplitude soliton regime-white noise
) ) 0<17,5252( 1+ §2)2P
The regime whemj,>1 can also be analyzed precisely, as R[2K(q,6)]C%(q, 0)]pegs = ——F—
long asqg(l)>1. It is found that the functiorC becomes 36sinif(7s)

ind dent o#,
independent o p( 41298s%(1+5%)2
xexp - ———————

ol

a>11 9 !
C(q,0) = €.
. q<14ﬂ_5/232q2
This means that a broad band radiation is emitted. Integrat- R[ZK(q,67)]C32(q,6)|,9:,,+qS =———0?
ing establishes tha(q)=—o?/4, g>1, so that the decay sinff(7s)
te ofgg is i 1)=qo— o?/4, which read -
rate ofqs is linearqg(l)=qp— o which reads as an ex Xexq—l&rzlﬁ).

ponential decay in terms of the energy
2|

HS(I)zHOex;{ —% .

The peak around= 7 (6=0) corresponds to an emission of
backward-going (forward-going radiation. In the white
noise case, we have seen that the peak ar@and is domi-

The energy decay rate is also independent of the energy gpnt. [Ir_1ht_he framewr:)rkcf>1hthe peak arm;rlldzo is domi- |

the incoming soliton. This remarkable feature was pointe \ant. This means that, in the presence of long-range correla-

out by the numerical simulations carried out in REES]. tion, radiation is emitted in the forward direction, and its

When the valueq, becomes of the order of 1, the decay spectrum is centered around the carrier wave number of the
S 1

switches to the power law described in the preceding sectior?.omon' Integrating the above expressions establishes that
It should be noted that the decay rate of a large-amplitude

soliton is higher than the one of a small-amplitude soliton. _ ‘/;(rzlccf if °l.<1, I.>1, gq<1
This seems in contradiction with previous analysis of soli- 18X 35 coTe

tons driven by random perturbations for other types of inte- F(a)= 302

grable systems, such as the NLS equafibjp However, we g if ¢3l>1, 1.>1, q<1,

cannot extrapolate the results corresponding to the continu- 25d ng
ous NLS equation to our system for the following two rea-

sons. First, the amplitude and velocity of the NLS soliton areand Eq.(17) can be solved which establishes a power law
not coupled and in the large mass limit the variations of masslecay for the soliton energy. The decay rate is found to be
is small, but the variation of velocity is important. In the maximal wheng®l.~ 1. This demonstrates that the strongest
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LQgy/Fo=LCy=m, wherer, is the relative displacement
between two points of mass. We then get the equation of
motion

Wi J_
FIG. 1. Electric Toda lattice with linear inductan¢éeand a
nonlinear capacitance such @§V,)=Qq/(Fo—Vo+V,).

m.';n:2 exXp—rp) —exp(—rnig) —exp(—rp_q).

Settingr,=x,_1—X,, we get the standard form of the Toda
chain. If L=L, is a constant, then a voltage-pulse soliton

interaction between the soliton and the fluctuations of theparametnzed by the wave numbey can be generated
medium occurs when the width of the soliton is of the order

. sink?

of I3 sites. . _ _ V,(t)=Fq : () .

Let us consider now a large-amplitude solitpe 1. The cosH[ gsn—sinh(gg)t/ yLoCol
scattered energy density has a pealk=at0 with bandwidth _ ) . 5
-1 Its amplitude isV=Fysini(q) or =Fyqs for a small-
¢ amplitude soliton. In the electric chain plays the role of

a1/ mass. Thus, variations of the linear inductance of the form
IQ[ZK(q,a)]CZ(q,e) ~ Te2q02|cexq_492|§), L(n)=Lo[1+e(n)] with independent random variables

[e(n)],c N corresponds in the mechanical chain to the varia-
tions of masses considered in this work. Denoting
=(e(n)?), the amplitude of a small-amplitude voltage-pulse
éoliton decays as

which means that radiation is only emitted in the forward
direction. Integrating yields thdt(q) = — /(64 5), which
shows that the total amount of emitted radiation is reduce
with respect to the white noise case. This reduction can be

interpreted as a result of the fact that the soliton widtthe Vs(n)ZVS(O)( 1+
order of one sitgis here very different from(l:’3 (we have

lc>1), resulting in a poor interaction. Once again, note thatyhile for a large-amplitude soliton the amplitude decays as
the decay rate of the soliton energy does not depend on the
incoming energy.

802V4(0)n| 1
15F, ’

2
vs(n):vs(O)exp( - UTn .

G. Application to the electric Toda chain . _

Let us estimate the value of the predicted effect for theIn the exp_erlment perform(id b-‘/_'j_'jg’ @3] the parameters

possible experiment with the random electric Toda chain. Ad'ere L=22 puH, C(V). _.27\/ pF, - and V(0)
~9-10 V. So for the variations df equal to=2uH, we

known, the Toda lattice can be modeled by a special type of ; .
electric transmission linésee Fig. 1 with a linear induc- Ohave02~0.01 and the decay of the large-amplitude soliton
tancelL and a nonlinear capacitané&V,). The equation by a factor /e atn=100.
governing this system i$24] LQ,,=V41+V,_1—2V,,,
where Q,, denotes the charge stored in théh capacitor.
Then, we assume that the differential capacitance is modeled ) ) ) ) )
by C(V) =Qo/(Fo—Vo+V), whereV is the applied voltage The rgsglts de(lvgd in the preceding section are theoreti-
in the region ¥o,Vo+V,) and C(Vo)=Qy/Fo=Cq,. The cally valid m_the limit cases—0, wher(_e the amplitudes of
chargeQ,(t) can be divided into two parts the perturbathng go to zero and_ the 5|ze_of the random seg-
ment goes to infinity. In this section, we aim at showing that

IV. NUMERICAL SIMULATIONS

Vo Vo+ V(1) the asymptotic behaviors of the soliton can be observed in
Qn(t)=f0 C(V)dV+ fv C(V)dv numerical simulations in the case whereis small, more
0 precisely smaller than any other characteristic scale of the
V(1) problem. We integrate E¢9) by using a fourth-order Runge-
=Qc+Qoln(1+ Fy ) Kutta method.

We consider random masseg=1+¢V,, along the seg-

SinceQ, is constant, we get the equation for the charge ment[1N], whereV, are independent random variables
with uniform distributions betweer-1 and 1. We take the

. Qn:1— Q¢ Qn-1—Q¢ valuee =0.1. The simulated evolutions of the soliton ener-
LQn=Fo| &x Qo tex Qo gies are presented in Fig. 2 and compared with the theoreti-
cal evolutions given by Eq7) in the scaleN=[1/£2]. We
Qn— Q¢ can observe, in particular, in Fig(l2c) the algebraic decay
—2ex . . A .
Qo of the energy of the soliton, and in Fig(d the exponential

decay of the energy and the cross over to the power law
This equation can be rewritten in the form corresponding tadecay. All these results confirm that the effective ordinary
the Toda chain equation, as we shall now see. Let us makdifferential Eq.(17) describes with accuracy the transmission
the electromechanical transformatio® (—Q.)/Qo=—r,, of a soliton in a randomly perturbed Toda lattice.
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FIG. 2. Energy of the transmitted soliton as a function of the length of the impure segment. Different initial values for the soliton
parameters are addressed. The solid lines stand for the theoretical Nadu€%7)], and the dotted lines plot the results of full numerical
simulations. The scales are lin-lin in pictui@, log-log in pictures(b) and(c) (so that theN " decay is noticeabjeand lin-log in picture
(d) (so that the initial exponential decay is noticeable

V. CONCLUSION the dimensionless parameter that governs the amplitude of
; meat 2
We have studied the propagation of solitons through &'{he pertur_batlon and the length of the segmet ). _In the
; asymptotic framework where goes to zero, the soliton gas
segment olN impure masses. We have shown that the deca .
. : . . - “fias nonzero momentum, but quasizero energy. The genera-
rate of the soliton energy is an exponential decaying function). . : . .
. . tion of a large number of small quasilocalized solitons in an
of N for large energies, with a decay rate that does not de- . . : )
impure segment had been observed in numerical simulations

pend on the soliton. The scattering of a large-amplitude soli; :
ton is characterized by the emission of a broad band radiatgy Kulbotrlal[%S]. Tnesg waves were mdehed found FO esfca;]pe
tion in forward and backward directions. When the energyver.y slowly from the Impure segment. The production of the
becomes small, the decay switches to the powerNaw?2 soliton gas is interesting by itself as a new phenomenon that
The scattering of a small-amplitude soliton is characterized no_t(jenc(;)u;teredhwhlzn Ia ratl)ndom NI(_jS or ':]‘L er?uatlog IS
by the emission of a narrow band backward-going radiation 2N €red: utits ould also € pointed out that this produc-
tion is very important in that we cannot understand correctly

The role of the correlation length of the noise and the influ- . . . : .
Ehe changes in the conservation equations without accounting

ence of long-range correlation have also been discussed. [n . .
.for soliton production.

presence of long-range correlation the soliton dynamics is
completely different. The soliton emits a narrow band radia-

tion with a spectrum centered around the soliton wave num-
. : . APPENDIX A: PROOF OF THE MAIN RESULT
ber, which means that the soliton is not backscattered, but
progressively converted into forward-going radiation. In this section, we outline the main steps of the proof of

We have put into evidence that the scattering of the solithe result stated in Section 1l C. The proof follows closely
ton generates not only continuous radiation, but also a solithe strategy developed in Rg26] in the KdV framework
ton gas, that is to say a collection &f, of ordere "2, soli-  and we shall underline the key points.
tons with small parameterg’, of ordere? (remembere is In a first time, we carry out the analysis under the so-
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called adiabatic hypothesis. The adiabatic approximations, up to a phase term
consists in assuming priori that, while the soliton exists, its

evolution and the other components of the wave do not in-

teract. More precisely, we assume that the time evolutions of A%(6) ==B< o t+AT> —5( o0 t+AT
the Jost coefficienta andb given by Eqs.(13 and 14 de- ' Tg2

pend only on the components of the functionsndy that

are associated with the soliton. We then carry out calcula- ) )
tions under this approximation. It reduces the analysis to an =ieC(6) 2 , Viaexg 2inK(0)],
infinite-dimensional set of ordinary differential equations n=Ns(T/e%)

with random coefficients, and eventually it provides an ex-

pression of the solutionc(v). A posteriori we check for  whereNg(T/&?) is the soliton center at tim&/s?, g is the
consistency that this approximation is actually justified in thesoliton wave numbeiK is defined by Eq(21), and
asymptotic framework — 0. More exactly, we show that the

components of the functiong andy which correspond to 1 "

the interplay between the computed radiatiorcluding the C(o)= —J [Ceq(t)—Csq(t)]

soliton gag and the soliton, or else which originate from the 2sinf) )" '

sole effect of the radiation, can be considered as negligible
terms for the soliton evolution.

Ng[(T+AT)/&?]

X lﬂ:,o( ei G,t)Ze— 2i Sin(0)tdt,

1. Prove the stability of the zero of the Jost coefficiena sinhz(q)
Cs,n(t) =1+ B )
cosi[qn—qg—sinh(q)t]

The zero corresponds to the soliton. This part strongly
relies on the analytical properties afin the unit diskD, of
the complex plane. Foke D; outside the two small balls

with centers at- 1 and radiusM 2, we can derive estimates " 71/21+ei9‘ qA(t)
of a(k) by Egs.(13 and 14. We then apply Rouctetheo- s o€, 1) =A(t) EEPTEr
rem so as to prove that the number of zeros is constant inside
the unit disk minus the two small balls. This method is effi-
cient to prove that the main zefoorresponding to the inci- 1 + @24+ 2 sinh@)t
dent soliton is preserved, but it does not bring control on its At)=————

1+ eZ sinh@)t

precise location in the unit disk. This step is not sufficient to
compute the variations of the soliton parameter. Furthermore,

it is also possiblgand it actually holds truethat new soli- Computations based on the residue theorem showGHat
tons with parameters; inside the small balls are generated. indeed given by Eq(19). On the other hand, we can com-

2 -
Note, however, that the numb?i;(t/s ) of such new soli- ;16 the mean and the correlation function|Af|2 at two
tons can be bounded above by“. Indeed, we shall see in nearby frequencies

the next paragraph that the amoupt of displacement in-

duced by radiation is of order 1 for propagation distance of .

orders 2. The conservation of the total displacement then (|A%|%(6))=C?(O)R[2K(6)]e2ANE,
implies that the displacememg=22fiqu induced by the

soliton gas is bounded above by 0 and below byD,

200 |<|A8|2<a>|A8|2<e')>|=<|A8|2<0>>2[1

2. Computation of the amount of radiation,
and then the variations of the soliton parameters + sinc’-(

[Kw)—K(e')]AN;‘)

2

Under the adiabatic approximation, we solve the evolu-
tion Eqgs.(13) and(14) so that we get a closed-form expres- ] [K(0)+K(0")]JANZ
sion of the ratiob/a. More exactly, the scattering data +sin¢ 2 :

b(k,t)=b/a(k,t)e” “®t at timety/e? is given by

_ to e to/e? where sincg)=sin@©)/s and ANZI=NJ(T+AT)/&?]
bk, ==~ _J dty* (k,t)e” oM, —Ng(T/&?) is of ordere 2. This shows that the frequency
€ K=k™*/ - correlation radius of the scattered energy density is of order
) ) €. This implies that the integrated energy density is a self
where y(K,t)=ZVqn(k,)[cnra(t) —cn(t)]. Setting k  ayeraging quantity, so that the total radiated energy is deter-

=e'’, the increment of ministic at first order ins. The time perturbations preserve
o _ _ the total energy, so we can deduce from the radiated energy
b(e'’,t)=Db(e'’ t)/a(e'’,t)exd — 2isin(6)t] the decay of the energy due to the soliton part
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Ho=2{sinH g*(1)]costigq®(1)]—q°(I)} =i+, andc=cgs+c, into Egs.(13 and 14 allows us to
derive the second-order correction to the Jost coefficéent
o o [of order £?/(k—k™1)]. This step puts into evidence that
+j21 2[sinh(qj)coshiqj) —aj] new solitons with parameters’ of ordere? are generated.

The final part of the proof consists in checkiagposte-
riori the adiabatic hypothesis, that is, to say proving that the
radiated wave packet which has been determined here above
has actually no noticeable influence on the evolutitt3d
wheren®(e'?) = —log[1—[b(€%[?]. Since the new generation and 14 of the Jost coefficienta andb. We must estimate the

of solitons consists 0f°=0(e~?) solitons whose energies components of the functionsg and} which have been ne-
are of orders®, only the discrete energy of the main soliton glected until now and which are related to the interplay of
and the continuous energy of the radiation are of order 1 iRhe main soliton, the soliton gas, and the radiation. These are
the balance of the total energy. This establishes the formulgchnical calculations which are based upon the mixing prop-

(17). erties of the proces¥, . These estimates are qualitatively
similar to the ones that are presented in R&8] for the
3. Computation of the form of the scattered wave and check randomly perturbed nonlinear Scdinger equation. We
the adiabatic hypothesis shall not give the detailed derivations of these estimates be-
Given the scattering data, we can reconstruct the wave bgause they consist of lengthy calculations that are specific to
IST. The procedure is given for instance in REd8] for a  the perturbation, that is, under consideration. Since this work
general type of perturbed KdV equation. We get the first twowas performed in Ref[29] for a randomly perturbed NLS
terms of the expansion of the keriekEKs+ K, , whereKs  equation, and the technical estimates are essentially similar
corresponds to the soliton akg corresponds to the emitted although the details are different, we thought it better to refer
radiation. By solving the GLM equation, we can deduce thethe interested reader to this paper for an example of the tech-
form of the radiation in the vicinity of the soliton as well as nical estimates that are necessary for the check of the adia-
the corresponding Jost functiolg and ¢, . Substitutingyy  batic hypothesis.
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